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NETL SOFC Fuel Cell Modeling Team

• William Rogers, NETL-DOE
• Randall Gemman, NETL-DOE
• Mehrdad Shahnam, Fluent, Inc.
• Michael Prinkey, Fluent, Inc.

• SOFC Modeling effort with FLUENT started in 1999.
• SOFC Model has undergone three major revisions since 

that time
– Including more physics
– Increase robustness and geometric flexibility
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Fuel Cell Technologies

• Fuel cells are categorized by the electrolyte type they use. 
Major fuel cell technologies are:

– Polymer Electrolyte Membrane Fuel Cells (PEMFC)
– Alkaline Fuel Cells (AFC)
– Phosphoric Acid Fuel Cells (PAFC)
– Molten Carbonate Fuel Cells (MCFC)
– Solid Oxide Fuel Cells (SOFC)
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Fuel Cell Technologies

• Of the five major fuel cell types, fuel cells modeled with 
FLUENT are

– Polymer Electrolyte Membrane Fuel Cells (PEMFC)
– Alkaline Fuel Cells (AFC)
– Phosphoric Acid Fuel Cells (PAFC)
– Molten Carbonate Fuel Cells (MCFC)
– Solid Oxide Fuel Cells (SOFC)
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Summary of the “1-D” PEMFC Model

• MEA layer is treated a reaction layer and ion transport is 
not modeled.

• Current density is computed based on the local Nernst 
potential, activation losses, and MEA resistivity.

• Source terms are computed for the mass, species, and 
energy equations based on the current density.

• Since the MEA layer is not resolved, fewer computational 
cells are required than other approaches.

• This reduced MEA model requires more experimental 
correlations and submodels.
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Summary of the “3-D” PEMFC Model

• The catalyst layers and the membrane (MEA) are fully resolved for 
accurate modeling of electrochemical reactions, water formation and 
transport

• Two electro potential fields (for electrons and ions) are solved which play 
a role in determining the local current density

• Water transport, contact resistance, joule heating, reaction heating, phase-
change, transient effects, etc. included

• Fully-implicit numerical treatment; fully parallel
• User-friendly setup: GUI input
• Friendly environment for users to implement their own models via User-

Defined Functions (UDF) and User-Defined Scalars (UDS)
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Other Fuel Cell Activities

• SOFC and PEM Reformer modeling
– Uses FLUENT’s stiff chemistry solver
– Includes ISAT to significantly (x100) increase the speed of 

chemistry computations

• Vision21 Integration of Aspen/PLUS and FLUENT
– Allows flowsheet-type analyses with CFD-level detail as needed
– Currently using the SOFC model in FLUENT as a component
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SOFC

• Solid Oxide Fuel Cell (SOFC)
– Electrolyte: solid zirconium oxide with ytrria
– Operating Temperature: 600 – 1000 oC
– Application: large electrical power generation
– Advantages: inexpensive catalyst, higher efficiency, internal 

reforming, better match with small gas turbines
– Disadvantages: high temperature enhances breakdown of cell 

components, gas sealing difficult
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Fuel Cell Modeling

• SOFC modeling requires modeling of:
– Fluid flow, heat transfer, and mass transfer in porous media (anode 

and cathode)
– Electrochemical reactions
– Transport of current and potential field in porous media and solid 

conducting regions
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SOFC Modeling

• FLUENT handles all aspects of the hydrodynamics, species transport 
and heat transfer in the flow channels and the porous electrodes (anode 
and cathode).

• A User Defined Function (UDF) is used to model
– electrochemical reactions
– potential field in the electrically conducting zones

• The model is parallelized and shows identical scaling to normal 
Parallel FLUENT.  The fuel cell model is only a small computation

• Includes treatment for CO/H2 electrochemistry
• The model has been tested for stack configurations
• The model has also been used in a transient CFD simulation (with the 

electrochemistry assumed quasi-steady
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SOFC Modeling
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SOFC Models

• Electrochemical Model: predicts local current density, 
voltage distributions.

• Electric Potential Field Model: predicts current and 
voltage in porous and solid conducting regions along with 
contact resistance.
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SOFC Models

• Electrochemical Model
• Electric Potential Field Model
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Electrochemical Model

• The general electrochemical reaction is*

aj stochiometric coefficient of species i
Aj chemical species
n number of electrons

−∑ ⇔ enAa
N

j
jj

*   J.S. Newman, “Electrochemical Systems”, Prentice Hall, Englewood Cliffs, New Jersy, 1973.
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Electrochemical Model

• The rate of Consumption or destruction of the  species is

S    source or sink of species
a stochiometric coefficient
i current 
n number of electrons per mole of fuel
F Faraday constant

Fn
iaS −= (g-mole/sec)
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Electrochemical Model

• Electrochemical reduction of oxygen at the cathode:

• Electrochemical oxidation of hydrogen at the anode:

)(22/1 2
2 SOFCOeO −− ⇔+

)(22
2

2 SOFCeOHOH −+⇔+ −
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Electrochemical Model

• By convention*, the current density is positive when it 
flows from the electrode into the solution (electrolyte)

• The current densities are positive at the anodes

• The current densities are negative at the cathode

*   J.S. Newman, “Electrochemical Systems”, Prentice Hall, Englewood Cliffs, New Jersy, 1973.
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Electrochemical Model

• In SOFC at the anode electrode:
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Electrochemical Model

• In SOFC at the cathode electrode:
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Electrochemical Model

• Assumptions:
– Due to geometrical considerations, ionic flow across the electrolyte 

is assumed to be one dimensional.

Electrolyte

Cathode electrode/electrolyte interface

Anode electrode/electrolyte interface
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Electrochemical Model

• Ideal cell potential is calculated  by Nernst equation
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Electrochemical Model

• The terminal cell potential is:

where ηohmic, ηact, a , and ηact, c represent losses due to ohmic 
overpotential, activation overpotential at the anode, and activation 
overpotential at the cathode respectively

cactaactohmicidealactual  -  -  - E E ,, ηηη=
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Polarization Losses

• Ohmic polarization:
– Ionic losses through the electrolyte
– Electrical resistance in the conducting porous electrodes and 

current collectors
– Electrical resistance at the interface of the current collectors and 

the electrodes or the electrodes and the electrolyte (contact 
resistance)

Ri=ohmic ⋅η
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Polarization Losses
• Activation polarization:

– Potential losses due to slowness of electrochemical reactions at the anode 
and the cathode electrodes

a:ratio of active area to membrane geometrical area
i0,ref : exchange current density at reference condition
Yj : mole fraction 
γ :concentration exponent
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Electrochemical Cell Values

Vn

Rn

Vn = effective local potential

Rn = effective local resistance

In = local current

Anode electrode/electrolyte interface

Cathode electrode/electrolyte interface

Electrolyte
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Electrochemical Model
IT

Vn

∆VInRn

∆Vn = Vn - In Rn for each face (n)

IT = Σn In 

IT is the total system current specified as a user input
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Species Fluxes

• The species production or destruction term in the species 
equation is:

• Using the local current information, the fuel cell model applies
species fluxes to the electrode boundaries in the FLUENT 
simulation.

M
Fn
i
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Fuel Cell Models

• Electrochemical Model 
• Electric Potential Field Model
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Electric Potential Field Model

• Electric potential field model provides:

– Ohmic losses in the electrically conducting materials (current 
collectors and electrodes)

– Contact resistance at appropriate interfaces
– Ohmic heating through conducting materials as the result of ohmic 

losses
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Electric Potential Field Model

• Electric potential field throughout all conductive regions is 
calculated by charge conservation

since

then

σ is the electric conductivity
φ is the electric potential field

0=⋅∇ i

φσ ∇−=i

0)( =∇•∇ φσ
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Electric Potential Field Model

• Changes in electrical potential at the a surface due to 
contact resistance or electrochemistry is included

• Local current distribution in the conducting regions is used 
to obtain the ohmic heating (I2R).

• As more complexity is introduced into the fuel cell 
geometry, the coupling of the electric field and 
electrochemistry becomes very important.
– Tubular cells
– planar-type cells with small area current collectors 
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SOFC Model Validation SOFC Model Validation (courtesy of DOE/NETL)(courtesy of DOE/NETL)

• Validate models with experimental data
– University of Utah has tested cells and supplied representative performance data

DOE Standard Cell
 Anode Thickness: 1mm 
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Courtesy of DOE/NETLCourtesy of DOE/NETL
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Courtesy of DOE/NETLCourtesy of DOE/NETL
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Modeled Cell 
Assembly

Cathode: 50 microns

Cathode Interlayer: 20 microns

Electrolyte: 10 microns

Anode Interlayer: 20 microns

Anode : 1 mm
Anode Current Collector: 127 microns

Cathode Current Collector: 127 microns

Courtesy of DOE/NETLCourtesy of DOE/NETL

Detail of Modeled Cell
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Velocity
Vectors

O2 Mole Fraction

H2 Mole Fraction

H2O Mole Fraction

Courtesy of DOE/NETLCourtesy of DOE/NETL

Cell Type: Standard Cell, 1mm 
Anode

Average Current Density: 1A/cm2

Cell Temperature: 800C / 1073K
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Cell Type: Standard Cell, 1mm Anode

Average Current Density: 10,000A/m2

Cell Temperature: 800C / 1073K

Current Density on Electrolyte-Anode Face
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Courtesy of DOE/NETLCourtesy of DOE/NETL

Cell Type: Standard Cell, 1mm Anode

Average Current Density: 1A/cm2

Cell Temperature: 800C / 1073K
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Standard Cell: 800C
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